
DTIC FILE COPY

0

04N
N

Interprocessor Invocation
on a NUMA Multiprocessor

Alan L. Cox, Robert J. Fowler,
and Jack E. Veenstra

Technical Report 356
October 1990

OTICSELECTE
NOV23 190I

-Ai,o"O,..m pWc rwr
, -. a - .U _m itd .

UNIVERSITY OFROC1 R
COMPUTER SCIENCE

I I '.'A

/

Interprocessor Invocation on a NUMA Multiprocessor

Alan L. Cox
Robert J. Fowler
Jack E. Veenstra

The University of Rochester
Computer Science Department
Rochester, New York 14627

Technical Report 356

October 1990

Abstract

On a distributed shared memory machine, the problem of minimizing accesses to remote memory
modules is crucial for obtaining high performance. We describe an object-based, parallel program-
ming system called OSMIUM to support experiments with mechanisms for performing invocations
on remote objects. The mechanisms we have studied include: non-cached access to remote mem-
ory, data migration, and function-shipping using an interprocessor invocation protocol (liP). Our
analyses and experiments indicate that lIP competes well with the alternatives, especially when the
structure of user programs requires synchronized access to data structures. While these results are
obtained on a NUMA multiprocessor, they are also applicable to systems that use hardware cache
coherency techniques. /

This work is supported in part by ONR/DARPA research contract no. N00014-82-K-0193 and in part by NSF
research grant no. CDA-8822724.

SECURITY CLASSIFICATION OF THIS PAGE ("en Date EntereJ)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

3561

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Interprocessor Invocation on a NUMA technical reportMulti orocessor
6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) . CONTRACT OR GRANT NUMBER(s)

Alan L. Cox, Robert J. Fowler, & Jack E. Veenstra N00014-82-K-0193

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS

Computer Science Department
734 Computer Studies Bldg.
University of Rochester. Rochester, NY 14627

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency October 1990
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, VA 22209 12
14. MONITORING AGENCY NAME 6 ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of this report)

Office of Naval Rescarch unclassified
Information Systems
Arlington, VA 22217 1S. DECLASSI FICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

none

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

RPC, remote invocation, NUMA memory, object-oriented, caching,
scheduling, migration

20. ABSTRACT (Continue on reverse side If necessary end identify by block number)

(see next page)

DD I JAN 73 1A71 EDITIO. 1)F I Nt',1 I! IS ,6BSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

20. ABSTRACT

On a distributed shared memory machine, the problem of minimizing
accesses to remote memory modules is crucial for obtaining high
performance. We describe an object-based, parallel programming system
called OSMIUM to support experiments with mechanisms for performing
invocations on remote objects. The mechanisms we have studied include:
non-cached access to remote memory, data migration, and function-
shipping using an interprocessor invocation protocol (P). Our analyses
and experiments indicate that IP competes well with the alternatives,
especially when the structure of user programs requires synchronized
access to ita structures. While these results are obtained on a NUMA
multiprocessor, they are also applicable to systems that use hardware
cache coherency techniques.

Acoession For

NTIS GRAAI

DTIC TAB
Unannounced
Justificatlon

By

Distribution/

J Availability Codes
, Avail nd/or

. . Dist Special

.. ____... .__

1 Alternative Mechanisms for Remote Object Invocation.

While the physical distribution of active and passive entities in large parallel computer systems
acvicrse!y affects the latency of individual operations, the alternative of co-locating all parts of a
program at a single processing element is unsatisfactory. Reducing the execution time of a compu-
tation by exploiting parallelism requires partitioning and distributing (mapping) sub-computations
and data among the processors and memories of the system [7, 22]. OSMIUM (Object System Mech-
anisms Implementing Universal Mobility) is a parallel, object-based programming system designed
to support experiments with dynamic mapping on large shared-memory computers. OSMIUM pro-
vides a general set of alternative implementations for invoking objects that are not co-located with
the invoking thread. These include: non-cached fine-grain access to the remote memory, implicit
object migration by the kernel's software caching system, explicit migration assisted by the OS MIU M
run-time library, and function-shipping using an interprocessor invocation protocol (lIP). In most
cases the choice of which of the alternative mechanisms to use is strictly a performance issue; these
decisions can be made transparently by the kernel, the compiler, and the language run-time library,
or they can be made explicitly by the programmer late in the program development process. While
it was implemented specifically to run on a BBN Butterfly GP1000 [2], a NUMA multiprocessor, the
ideas incorporated in OSMIUM are also applicable to any multiprocessor architecture in which the
physical distribution of the memory hierarchy interacts with user programs to affect performance.
The techniques discussed in this paper will become more important as processor speed increases
relative to the latency of a remote memory access such as a cache miss.

OSMIUM runs on the PLATINUM operating system kernel [10]. The memory model implemented
by the kernel resembles a simplified Mach [211, from which it is derived. Each virtual address space
can be shared by kernel-scheduled threads on multiple processors, where, unlike Mach, a thread is
bound to a single processor for its lifetime. To decrease the average latency of memory access and to
reduce contention, the kernel uses a software implementation of a directory-based cache coherency
protocol to control the migration and replication of data on a per-page basis. Because of the large
block size and the software implementation, the overhead of caching could be very large for data that
is write-shared at a fine grain. When the kernel detects thrashing it temporarily disables caching
on a per-page basis. User code may explicitly specify the placement of data on a per-page basis. It
may also specify that a write-update protocol be used to maintain coherency for a page instead of
the default write-invalidate protocol.

OSMIUM is a parallel extension of C++ [25] in which a parallel application program occupies a
single PLATINUM address space. Its run-time library provides a lightweight task package that uses a
single kernel thread on each of the available processors for the execution of the user program. Tasks
can be created with an explicit operation or implicitly as part of the IIP. Although the entire virtual
address space is accessible from any processor, the memory allocator maintains a set of zones so
that data with different access patterns can be allocated to distinct virtual address ranges. Thus, if
a particular range is occupied only by data accessed by a single processor, the kernel will keep that
range in memory local to that processor. Similarly, large migratory objects are allocated in zones
distinct from those occupied by fine-grain write-shared objects such as locks.

Our research using OSMIUM is designed to answer the following questions:

1. What are the costs and benefits of the different forms of mobility associated with each of the
mechanisms for invoking operations on remote data?

2. Can we justify the inclusion of each alternative on performance grounds? To be worth including
in a system there must be a case in which each mechanism outperforms all of the others.
Furthermore, the cost of including the merhini rn vhrild be balanced Rgaiiist the tcai bencfl
or ubilig it.

3. Since making explicit placement decisions is a burden on users, it is desirable to make mapping
decisions automatic and transparent. Are there effective automatic policies for making place-
ment decisions and choosing among invocation mechanisms? At what level of the system can

and should these choices be made? Operations implemented in hardware or in the kernel can
be very efficient, and decisions made at these levels can be sensitive to rapidly changing perfor-

mance feedback while being functionally transparent to the user. A limitation of these on-line
policies implemented at the lower levels of the system is that they neither have the benefit of
the kind of static analyses implementable in compilers nor do they know the programmer's
intentions.

While ultimately we are interested in all of these issues, they must be answered in order. In this

paper we present results addressing the first two issues.

1.1 Summary of Results.

This paper concentrates on the quantitative comparison of the use of the lIP to object migration or

non-cached remote memory reference.' The results comparing the relative merits of remote memory

access to object migration are specific to our prototype implementation of OSMIUM; the lessons are

most applicable to other systems that are based on an object-migration mechanism or that have

large cache block sizes. On the other hand, our comparison of the lIP to these mechanisms has

broader consequences for appropriate programming styles on any system in which there are high

relative costs due to latency and contention for memory operations that miss the local parts of the

memory hierarchy. In systems in which processors become faster with respect to the interconnect

latency [9, 12, 11, 17, 4], the use of interprocessor invocation will become more attractive compared

to naive shared-memory implementations of the same operations.

2 Rationale and Related Work.

In contrast with theoretical models of parallel computation such as the PRAM, in real parallel
systems data are partitioned among physically distributed memories and computational operations

are similarly assigned to physically distinct processors. To get good performance in a parallel
program, most operands should be in memories close to the processors that execute the operations
on them. Unless the processors do not share or communicate data among themselves, there will

be circumstances in which a program will specify that a thread of control on one processor should
perform an operation on data in a remote memory, usually associated with another processor.
Table 1 presents the set of alternative strategies for executing such remote operations. The simplest
strategy is to move neither the object nor the thread of control and to execute the operation remotely.

Remote execution in OSMIUM is done using remote memory references, but it may also be possible
to recursively partition the operation and to choose among the mechanisms for each component.

Another possible implementation of the remote operation is to migrate the data to the site of

the thread. This can be done at many levels including hardware caches, software caching schemes
such as shared virtual memory [18], software-controlled distributed object stores [20, 14], or transfer
of the data explicitly using message-passing. In some cases it may be more economical to move the
thread of control so that the operation is executed at the location of the data. The migration of the
thread can be either permanent or temporary, as in the execution of an operation in a combining
switch [13], remote procedure call, or location-independent invocation [5]. Finally, the thread, the

On a mnulti, a hardware cache-coherent multiprocessor, migration is performed through a sequence of cache misses
and the lattr , *-ion is not available.

2

OBJECT

Does Migrate/ Migrate/
not Replicate Replicate
move to Thread to another

node node
T Does
H not R L (M) R (M)
R move
E Moves to
A Object L (I) R (IM) R (IM)
D node

Moves to
another R (I) R (IM) L (IM)
node

Table 1: Alternatives for performing an operation on a remote object. Each uses some combination of
(R)emote memory references, (L)ocal memory references, remote (I)nvocation, or object (M)igration.

data, or both can be moved to a third location. These alternatives might be attractive to control

contention for processor and memory bandwidth.

While it provides mechanisms for all of these alternatives, the first use of OSMIUM is to test
the viability of interprocessor invocation on a shared-memory multiprocessor. The choice between
the IlIP and data migration or remote memory access is not determined automatically but by the
programmer. A policy in the software caching system automatically chooses between data migration
and remote memory access.

The development of OSMIUM is also motivated by our experiences writing and porting applica-
tions to PLATINUM. For the best performance, data with different access and sharing patterns must
be separated into different pages. This requires that users understand a program in some detail and
write appropriate code for memory allocation. Our experience has also been that a lot of problems
arise due to compilers and run-time libraries that are inappropriate for multiprocessor, especially
NUMA, use. For example, a naive placement of data by the linker can be a significant source of
false sharing. Co-location on a cache block of data such as a lock variable and a message buffer with
very different patterns of true sharing results in similar problems. OSMIUM addresses some of these
issues by providing a run-time library that insures the separation of its own data from user data
and includes routines to simplify user memory allocation.

2.1 Related Work.

Our work on OSMIUM touches on several areas of current research interest and provides a unique
synthesis of ideas and techniques.

There have been many distributed object-based programming systems, including Eden [6], Emer-
ald [15], Amber [8], and Clouds [20]. While they all run on multiple nodes on a local area network,
Amber is the only one of the group designed to run on multiprocessor nodes. Unlike OSMIUM inter-
processor invocation, remote invocation on Amber is used solely to communicate between threads
on different multiprocessors, while ordinary procedure call and shared memory are used between
threads on the same multiprocessor. OSMIUM uses the object model to help provide a modular
structure to application programs compatible with the need to avoid very fine-grain sharing in large

3

systems. The spatial modularity of object data structures and the temporal modularity of the oper-
ations ,'at manipulate them are visible both to the compiler and to the run-time library. Because
nicthod entry and exit mark changes in locality of reference, object-based programming provides
convenient demarcation points for the evaluation of (re)location decisions.

On a multi, a thread executing on a particular processor will load its footprint [26] into the
local cache. Rescheduling the thread on another processor separates it from its footprint, which
will then be migrated to the new location by a burst of cache misses. Scheduling methods that
take processor-cache affinity into account are intended to reduce the number and magnitude of such
transients [24]. A dual phenomenon occurs when a thread invokes an operation on often-used shared
data that is in another processor's cache; the new footprint will be remote from the invoking thread.
As an alternative to migrating the data with a burst of cache misses, IP is a mechanism to move
the operation to the processor that owns the cache.

Bershad has described a fast, user-level RPC (URPC) mechanism for shared-memory multipro-
cessors [3]. The implementation techniques for the IP and URPC are similar, but the goals are very
different. The major goal of URPC is to provide fast cross-address space communication, whereas
the IP is used as a mechanism for improving processor-data locality for object invocations. We call
our protocol IP rather than RPC because an interprocessor invocation in OSMIUM does not cross
address space boundaries.

One approach is the construction of high-performance mechanisms for blocking synchronization
for avoiding the loss of resources associated with mechanisms that stall the hardware or use spin
locks in software. At one extreme are the so-called "latency tolerant" processors such as HEP
[23] or Tera [16] that switch among multiple hardware contexts on memory references. At a coarser
grain, recent work on the Alewife multiprocessor is examining the use of lightweight software context
switches to hide the latency of cache misses in a scalable shared memory system [1]. Multithreaded
architectures such as HEP and Alewife can hide the latency of data retrieval, but do not reduce
the original amount of traffic to the remote memories. The IP blocks at the object invocation
granularity, but this is part of a mechanism to reduce the traffic rather than to hide the latency.
Blocking at any of these granularities affects the programming style. To maintain throughput each
processor must be given enough tasks to insure that it never idles.

3 The OSMIUM Prototype.

OSMIUM is an augmented version of C++. The main visible additions to the standard C++ run-
time environment are a lightweight task package and a memory allocation package that partitions
the virtual address space into a set of heaps called zones. An OSMIUM program is contained within
a single PLATINUM address space that has one kernel-scheduled thread per processor to run user
code. While the entire address space is visible to any of the threads, the use of zones allows a virtual
address range to be associated with the memory (or cache) of a particular processor. This association
can be a hard binding enforced by directives to the kernel or it can be a de facto relationship for an
address range accessed by only that processor. The zones are also used to partition data according
to sharing pattern.

When complete, OSMIUM will allow dynamic flexibility in the choice of mechanism for each
invocation, but in the prototype that we built to perform the experiments reported here, some of
the choices are constrained statically at compile-time. We modified the AT&T C++ translator
to generate inline stubs that use the 1IP for all calls to the methods of any class derived from the

distinguished base class uses-IIP. Public data is still directly accessible by remote memory access or
migration and inline methods provide direct access to both the private and public data. Methods of
classes not derived from usesIlP are always invoked using ordinary local procedure call regardless
of location. To summarize, if an operation is a call to a method of a class derived from usesIIP

4

that is not declared inline, that operation will use iP, even if the object is local. Otherwise, the
operation is executed locally, accessing the object using remote memory acc.ess, data page migration,
or write-update to replicated data. The choice of mechanism is made by PLATINUM using its ownl
dynamic policy [10] as well as directives generated implicitly by the run-time library or explicitly by
user code.

On each node the lightweight task package maintains a single task queue. Entries in this queue
are either requests to create tasks or replies to existing tasks. A task can be created either explicitly
by user code or implicitly by the lIP. We make the fundamental assumptions that the tasks within
an OSMIUM program are all cooperating towards a common goal, that they are doing necessary
work, and that it is more important to maximize throughput than to minimize the response time of
individual operations. Therefore, rather than use pre-emptive scheduling to ensure fairness, we use
run-until-block scheduling to reduce overhead.

The execution of the lIP begins with the inline stub generated by the translator. The stub
determines the location of the object from the object dictionary. A call is performed to the IIP-call
procedure which marshalls the parameters into a request message allocated on the stack and enqueues
the message on the receiving node. The caller then prepares to service an incoming request by
switching to a new task from a cache of free tasks. If the next queue entry is a request, it is executed
by the new task. If the entry is a reply, the new task returns to the free cache and the task specified
by the reply runs. This strategy reduces latency, overlapping task allocation by the caller with
request processing by the receiver without reducing throughput.

The task created to service a request determines the number of arguments passed by the caller,
copies the arguments to its stack, and performs a procedure call to the method. Upon return, the
request message is recycled into a reply containing the return value, if any. The task enqueues the
reply on the calling node and resumes service as above.

Because of the run-until-block scheduling, an object derived from usesIIP can be viewed as a
simple form of monitor in which the lock is released on nested calls to objects also derived from
uses.IIP. Unsynchronized operations can be implemented using inline methods or public data. We
have not yet implemented condition variables per se, but we do have blocking semaphores.

The object dictionary is implemented as a hash table. Since invocations are very frequent while
object creation and deletion are comparatively rare, it is appropriate to maintain the dictionary
in replicated form. Software cache coherency using a write-invalidate protocol works well for data
that are migratory, broadcast, or otherwise write-shared at a coarse grain. However, the cost of
invalidating a page is not just the cost of the invalidation operation. It includes the cost of replicating
the modified page back to the processors that share it. If updates are relatively infrequent and involve
a small part of the page, a write-update protocol works well. Dictionary data structures, for instance,
the OSMIUM object directory, have this kind of access pattern. At initialization OSMIUM instructs
the kernel to use its write-update protocol to maintain the coherency of the object dictionary.

Objects are assigned to nodes during the execution of the constructor for uses.IIP. The default
placement policy is implemented as a C++ virtual function. The user can override the default policy
for any given class by redefining this function.

The only feature distinguishing processors in an OSMIUM address space is that an address register
is reserved using the GNU C compiler (as the back-end for the C++ translator) for use as a pointer
to a nodestructure containing data private to the processor executing the current thread. Also using
the GNU C compiler to generate Motorola 68020 code, Mellor-Crummey and LeBlanc [19] evaluated
the cost of reserving a data register. A set of common Unix programs was slowed down by 1% in the
worst case. Since this private data includes the queues and other data used by the task package on
every invocation, the loss of the use of this register to the compiler was deemed a reasonable price
to pay.

5

Category Caller I Receiver
data marshalling 7 4
message enqueue and dequeue 11 10
synchronization 14 14
dispatch 3 4
thread switch 6
procedure call linkage 5 11

Table 2: Instruction Breakdown.

3.1 IP Latency and Throughput.

liP requires a minimum of 46 instructions by the caller 2 and 43 instructions by the receiver. Table 2
shows the breakdown by category for the caller and the receiver. During a remote object invocation
using th P the caller performs one remote read and four remote writes, whereas the receiver per-
forms eigit remote reads and ten remote writes. Each parameter requires one additional instruction
and remote memory reference by the receiver. The average execution time for an instruction such
as movi a2Q,dO accessing remote memory is 6.88,s versus 0.518pis accessing local memory, whereas
the average execution time for a write such as movl dO,a2Q to remote memory is 4.27ps versus
0.398ps to local memory.3

We measured the minimum latency of the lIP by timing 10000 calls to an empty procedure that
takes any number of parameters and does not, return a value. The curve labelled "call latency" in
Figure 1 shows the average measured execution time per invocation as the number of parameters is
varied from 0 to 8. In this experiment, the calling processor busy-waits while the receiver executes
its part of the protocol. Because some instructions in the caller and receiver parts of the protocol
are executed concurrently, this measurement of latency is an optimistic estimate of the overhead of
the IIP.

To obtain a more accurate estimate of overhead, hence throughput, we performed two related
experiments. The execution of the IIP on a local object takes 90.9ps if there are no parameters. The
single processor in this experiment executes both the caller and receiver parts of the protocol using
only local memory references. Exactly the same path through the code is executed in each iteration
of an experiment in which each of a pair of processors repeatedly invokes the empty procedure on
the other. Since we use run-until-block scheduling, the two processors are guaranteed to run in lock-
step. The average measured time per iteration is summarized by the curve labelled "call overhead"
in Figure 1. If there are no parameters, this experiment takes 196ps per iteration. The difference
compared with local execution of 105ps is consi tent with the 23 remote memory references used by
the protocol.

To separate the costs of the caller and receiver parts of the protocol, we made another measure-
ment of throughput by varying the number of processors that repeatedly invoke an empty method
of an object on an otherwise idle processor. We measured the rate at which one of those processors
is served. Increasing the number of processors from 1 to 2 only increases the average time per
invocation by 5 5 ps because of overlapping execution. From 2 to 15 processors, the average time
per invocation increases linearly at l17ps per processor with a correlation coefficient p = 0.99997.
This is the average time for the receiver to service and reply to a request. Since the average time to
perform both the caller and receiver parts of the protocol together is 196ps, the average time for the

2 This excludes extra instructions executed due to collisions in the hash table and while busy-waiting if no task is
ready to run.

3 All timings were gathered on a 16-processor BBN Butterfly GP1000. A processing node on this machine consists
of a 16.67MHz MC68020 with a MC68851 MMU and 4 MBytes of physical memory.

6

260 -

250-

240 -

230-

Time 220 -
(in ps) -

210 -

200 - "'al

190 -
r w call overhead

180- .-.-.-. call latency

170

-0 2 4 6 8
Number of Parameters

Figure 1: lIP Execution Times.

caller to issue a request and process the reply must be 79jis. The linear behavior of this experiment
indicates that the high-level contention for the object is not accompanied by low-level contention in
the liP mechanism: the time to service and reply to a request using the lIP remains constant.

4 Comparing the IIP to the Alternatives.

An evaluation of the choice of mechanism for performing an invocation might consider only the costs
-)f the alternatives when the operation is performed in isolation. Such an analysis would consider
these factors:

1. the number of memory references to the object by the operation (the cost of remote access),

2. the size of the object (the cost of copying),

3. the overhead associated with object migration and with the liP, and

4. the number of memory references to other data such as parameters.

On this basis, we hypothesize that an operation performing very few references is best done using
remote memory access. Data migration and the liP are the main candidates when the number of
references is large. The overhead of the lIP implemented at user level is much less than that of page
migration in the kernel. Unless page migration can co-locate the object with parameters and othe?
data, the liP will be the preferred mechanism. The results discussed in the remainder of this section
confirm these hypotheses.

7

In general, considering each invocation in isolation will not result in the best possible performance.
In a v systemn with a lot of concurrent activity contention can be an important, if not the dominant,
factor affecting performance. Each mechanism will experience different amounts of contention and
each will experience it at a different level. Operations using remote memory access contend at a fine
grain for memory and intercr ,,ect bandwidth, while operations using the UP "ontend in software
for access to the object. Because of contention, the tradeoffs among invocation mechanisms depend
not just on the inherent properties of each individual operation but also on the properties of the
operations with which it contends. Since it is difficult to perform analytic estimations of the amounts
and effects of contention, we present some measurements to help guide our insights.

Another problem with considering an invocation in isolation is that it is only part of a larger
computa' on. For example, if a thread of control is about to perform a long sequence of invocations
on a sii e object, it would be appropriate to co-locate the thread and the object for the entire
sequence, even though it may be cheaper to perform each individual operation using remote memory
access. The optimal dynamic placement problem is sure to be at least as hard as static placement
and mapping [7, 22].

4.1 The IP versus Remote Memory Access.

To determine analytically which of the liP or remote memory access is the faster mechanism for a
given operation, we would like to have a model that predicts the overhead for that operation. If we
can develop a simple, reliable model, it could be used by a ,ompiler or run-time system to determine
automatically which mechanism to use.

If an operation accesses onl1 the invoked object and the parameters of the operation, an estimate
of the overhead of using remote memory access to perform an operation is

toverhead - 6,36nreadliWS + 3 .87nwritess

where nread, and nurite, are the number of remote reads and writes that are required by the operation
to access the object. An estimate of the overhead of using lIP to perform an operation is given by
the "call latency" curve in Figure 1.

We validated our overhead estimates using dala gathered from the execution of two operations
varying the number of references they performed and the mechanism used. One of the operations
sunis the elements of an integer vector. The other performs an integer version of axpy on two integer
vectors.4 This operation performs two reads and one write for each of the corresponding pairs
of vector elements. By varying the lengths of the vectors we can change the number of memory
references performed by both operations. Based on the estimated overheads, the execution time
using remote memory access or the IP should be equal when the vector length is 28.6 for the vector
sum operation and 11 for the axpy operation.

We measured the execution time for 10000 calls to each operation using both remote memory
access and the IIP. We performed both the "call latency" and the "call overhead" experiments
described earlier. For the vector sum operation, remote memory access was faster up to a vector
length of 28, but beginning at a vector length of 29 the lIP was faster. For the axpy operation.
remote memory access was faster up to a vector leng-i: of 11, but beginning at a vector length of 12
the lIP was faster.

We believe that the results for the axpy operation varied from the prediction because the pipelin-
ing of the MC68020 at least partially overlaps a multiply with a remote access. We will see in a
later section that as the number of processors accessing a memory module increases, the ability of
pipelining to hide memory access latency diminishes.

4 WN'e consider the integer version of axpy to better approximate the ratio of floating point to memory access latencies
typical of machines based on rerent processor architectures, e.g. the BBN TC2000.

8

RMA saxpy
an IIP saxpy .

30 - r -. RMA integer axpy
IIP integer axpy

Average
Operation 20-

Time
(in ms)

10-

-0
-0I I

-0 5 10 15
Number of Processors

Figure 2: IIP Execution Time.

4.2 The IP versus Data Migration.

We have previously measured the time to migrate a 4Kbyte page in the absence of contention on
PLATINUM to be between 1.38 nis and 2.04 m.s [10]. The migration time varies depending on the
placement of the kernel data structures and whether the page is first replicated by a read and then
written requiring an additional fault to invalidate other copies. Thus the number of references
necessary to amortize the cost of a migration varies from 217 to 527 depending on the cost of the
migration and the ratio of reads to writes.

It will always be cheaper to use the 1IP to perform an operation than to move the page or
pages containing the object to the caller, unless the number of parameters as well as the location
and number of accesses to other data are considered. In fact, the most efficient way to perform an
operation may be to use the IIP and to use data migration to move some data with the invocation.

4.3 Using the IP to Reduce Contention.

Contention is a problem that manifests itself at many levels. In addition to memory and interconnect,
tasks contend for processors and for objects. To compare the effects of contention at the object level
to the machine (or memory module) level, we varied the number of processors performing 10000
invocations of the integer axpy and the single-precision axpy or sarpy on two vectors of length 128
located on an idle processor. We compared the use of remote memory reference to the lIP f,r
both operations for up to 15 processors. Operations performed using remote memory access are
only serialized by memory module bandwidth limitations. Figure 2 shows the average time per
invocation as the number of processors is increased.

9

For both operations the lIP is the fastest mechanism at one processor, but from the second
processor the results begin to differ. Memory bandwidth limitation is sufficient for the integer axpy
to run faster using the IIP instead of remote memory access. But because floating-point operations
are much slower and can be overlapped with remote memory access, remote memory access is the
faster mechanism for saxpy. On the other hand, that overlap is not available when IIP and local
memory operations are used.

The integer axpy and saxpy curves for remote memory access begin to converge at five processors.
This indicates that remote memory reference overhead becomes the bottleneck and the added cost
of floating-point operations is completely hidden by overlapping.

These experiments illustrate that concurrent memory-intensive operations on a single object will
contend with one another at a low level for memory modules and interconnect. By introducing
high-level synchronization in the IIP we reduce the level of logical concurrency and trade low-level
for high-level contention. This reduction of low-level contention, combined with the advantages of
always making local memory references, offsets the overhead of the IIP as well as the apparent loss
of concurrency in the user program.

4.4 The IP versus Explicit Synchronization.

Blocking synchronization has an advantage over busy-waiting: it allows the processor to perform
useful work while waiting for a synchronization event. The use of user-level lightweight tasks dra-
matically reduces the cost, of using blocking synchronization. For example, in OSMIUM the overhead
of obtaining and releasing a local, blocking semaphore is 61ps (88ps for a remote semaphore) in the
case in which the semaphore is obtained immediately. If the task has to block, the overhead is
comparable to the LIP.

The low cost of blocking means that busy-waiting should be used in far fewer cases than in other
systems, and it should never be used when any significant contention for a resource is anticipated.
In such cases, the lIP not only offers efficient blocking synchronization, but also the advantages
discussed above.

5 Conclusions and Open Questions.

Shared memory in a parallel computer system provides convenient distributed name spaces and the
means to access objects in those spaces. The judicious use of remote memory operations can be
very valuable. Used either explicitly or implicitly in the form of a cache miss, a remote memory
operation can be much more expensive than a local operation, for example, a cache hit, but it is far
less expensive than a messag.-passing operation that uses both memory components and processors.
Access to shared memory is a very valuable resource and should be used wisely.

Our experiments using the lIP show that even with shared memory the use of function shipping
can yield higher performance than the direct, naive use of shared memory. For certain classes of
operations the lIP can dominate memory access just on the basis of latency reduction. In a highly-
concurrent program, however, there will be contention for various abstractions. By moving the
synchronization and communication to a higher, more abstract level of the system, a programmer or
execution environment can reduce the total amount of contention. While these results were obtained
on a NUMA system in which data migration is performed by software, they are also applicable to
systems in which migration is performed by coherent hardware caches.

Based on the measurements presented here, we have begun to explore automatic techniques for
choosing among the mechanisms, using both static compiler analysis and dynamic protocols in the
run-time system and kernel.

10

References

[l] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. April: A processor
architecture for multiprocessing. In Proceedings of the 17th Annual International Symposium
on Computer Architecture, pages 104-114, June 1990.

[2] BBN Laboratories, Cambridge, Massachusetts. Butterfly Parallel Processor Overview, June
1985.

[3] Brian N. Bershad. High Performance Cross-Address Space Communication. PhD thesis, De-
partment of Computer Science and Engineering, University of Washington, June 1990.

[4] Roberto Bisiani and Mosur Ravishankar. PLUS: A distributed ired-memory system. In
Proceedings ef the 17th Annual International Symposium on Com,..er Architecture, pages 115-

124, June 1990.

[5] Andrew P. Black and Yeshayahu Artsy. Implementing location independend invocation. IEEE
Transactions on Parallel and Distributed Comuting, 1(1):107-119, January 1990.

[6] Andrew P. Black, Edward D. Lazowska, Jerre D. Noe, and Jan Sanislo. The Eden project:
A final report. Technical Report 86-11-01, Department of Computer Science, University of
Washington, November 1986.

[7] Sahid H. Boikari. Assignment Problems in Parallel and Distributed Computing. Kluwer,

Boston, 1987.

[81 Jeffery S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, and Richard J.
Littlefield. The Amber system: parallel programming on a network of multiprocessors. In Pro-
ceedings of the 12th A CM Symposium on Operating System Principles, pages 147-158, Litchfield
Park, AZ, December 1989.

[9] D. Cheriton, A. Gupta, P. Boyle, and Hendrik Goosen. The VMP Multiprocessor: Initial expe-
rience. refinements and performance evaluation. In Proceedings of the 15th Annual International
Symposium on Computer Architecture, pages 410-421, June 1988.

[10] Alan L. Cox and Robert J. Fowler. The implementation of a coherent memory abstraction
on a NUMA multiprocessor: Experiences with PLATINUM. In Proceedings of the 12th A0M
Symposium on Operating System Principles, pages 32-44, Litchfield Park, AZ, December 1989.

[11' Koursh Gharachorloo, Dardel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and
John Hennessy. Memory consistency and event ordering in scalable shared-memory multipro-
cessors. In Proceedings of the 17th Annual International Symposium on Computer Architecture,

pages 15-26, June 1990.

[12] J. R. Goodman and P. J. Woest. The Wisconsin Multicube: A new large-scale cache coher-
ent multiprocessor. In Proceedings of the 15th Annual International Symposium on Computer
Architecture, pages 422-431, June 1988.

[13] Allan Gottlieb. An overview of the NYU Ultracomputer project. In Jack Dongarra, editor,
Experimental Parallel Computing Architectures, pages 25-95. North-Holland, 1987.

[14] Gary M. Johnston and Roy H. Campbell. An object-oriented implementation of distributed
virtual memory. In Proceedings of the USENIX Association Distributed and Multiprocessor
Systems Workshop, pages 39-57, 1989.

11

[15] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mobility in the
Emerald system. ACM Transactions on Computer Systems, pages 109-133, February 1988.

[16] James T. Kuehn and Burton J. Smith. The Horizon supercomputing system: Architecture and
software. In Proceedings: Supercomputing '88, pages 28-34, 1988.

[17] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. The
directory-based cache coherence protocol for the dash multiprocessor. In Proceedings of the 17th
Annual International Symposium on Computer Architecture, pages 148-159, June 1990.

[18] Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis, Department
of Computer Science, Yale University, September 1986.

[19] John M. Mellor-Crummey and Thomas J. LeBlanc. A software instruction counter. In Proceed-
?ngs of the Third International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 78-86, April 1989.

[20] Da-. V. Pitts and Partha Dasgupta. Object memory and storage management in the clouds
kernel. In Proceedings of the 8th International Conference on Distributed Computing Systems,
pages 10-17, June 1988.

[21] R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron, D. Black, W. Bolosky. and J. Chew.
Machine-independent virtual memory management for paged uniprocessor and multiprocessor
architectures. In Proceedings of the Second International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 31-39, 1987.

[22] V. Sarkar. Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT Press,
Cambridge, Massachusetts., 1989.

[23] Burton J. Smith. A pipelined, shared resource MIMD computer. In Proceedings of the 1978
International Conference on Parallel Processing, pages 6-8, 1978.

[24] Mark S. Squillante and Edward D. Lazowska. Using processor-cache affinity information in
shared-memory multiprocessor scheduling. Technical report, Department of Computer Science
and Engineering, University of Washington, February 1990.

[25] Bjarne Stoustrup. The C++ Programming Language. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1986.

[26] Dominique Thiebaut and Harold S. Stone. Footprints in the cache. ACM Transactions on
Computer Systems, 5(4):305-329, November 1987.

12

